/** * Provides functionality for the handling of numeric axis data for a chart. * * @module charts * @submodule axis-numeric-base */ var Y_Lang = Y.Lang; /** * NumericImpl contains logic for numeric data. NumericImpl is used by the following classes: * <ul> * <li>{{#crossLink "NumericAxisBase"}}{{/crossLink}}</li> * <li>{{#crossLink "NumericAxis"}}{{/crossLink}}</li> * </ul> * * @class NumericImpl * @constructor * @submodule axis-numeric-base */ function NumericImpl() { } NumericImpl.NAME = "numericImpl"; NumericImpl.ATTRS = { /** * Indicates whether 0 should always be displayed. * * @attribute alwaysShowZero * @type Boolean */ alwaysShowZero: { value: true }, /** * Method used for formatting a label. This attribute allows for the default label formatting method to overridden. * The method use would need to implement the arguments below and return a `String` or an `HTMLElement`. The default * implementation of the method returns a `String`. The output of this method will be rendered to the DOM using * `appendChild`. If you override the `labelFunction` method and return an html string, you will also need to override * the Data' `appendLabelFunction` to accept html as a `String`. * <dl> * <dt>val</dt><dd>Label to be formatted. (`String`)</dd> * <dt>format</dt><dd>Object containing properties used to format the label. (optional)</dd> * </dl> * * @attribute labelFunction * @type Function */ /** * Object containing properties used by the `labelFunction` to format a * label. * * @attribute labelFormat * @type Object */ labelFormat: { value: { prefix: "", thousandsSeparator: "", decimalSeparator: "", decimalPlaces: "0", suffix: "" } }, /** *Indicates how to round unit values. * <dl> * <dt>niceNumber</dt><dd>Units will be smoothed based on the number of ticks and data range.</dd> * <dt>auto</dt><dd>If the range is greater than 1, the units will be rounded.</dd> * <dt>numeric value</dt><dd>Units will be equal to the numeric value.</dd> * <dt>null</dt><dd>No rounding will occur.</dd> * </dl> * * @attribute roundingMethod * @type String * @default niceNumber */ roundingMethod: { value: "niceNumber" }, /** * Indicates the scaling for the chart. The default value is `linear`. For a logarithmic axis, set the value * to `logarithmic`. * * @attribute * @type String * @default linear */ scaleType: { value: "linear" } }; NumericImpl.prototype = { /** * @method initializer * @private */ initializer: function() { this.after("alwaysShowZeroChange", this._keyChangeHandler); this.after("roundingMethodChange", this._keyChangeHandler); this.after("scaleTypeChange", this._keyChangeHandler); }, /** * Formats a label based on the axis type and optionally specified format. * * @method * @param {Object} value * @param {Object} format Pattern used to format the value. * @return String */ formatLabel: function(val, format) { if(format) { return Y.DataType.Number.format(val, format); } return val; }, /** * Returns the sum of all values per key. * * @method getTotalByKey * @param {String} key The identifier for the array whose values will be calculated. * @return Number */ getTotalByKey: function(key) { var total = 0, values = this.getDataByKey(key), i = 0, val, len = values ? values.length : 0; for(; i < len; ++i) { val = parseFloat(values[i]); if(!isNaN(val)) { total += val; } } return total; }, /** * Returns the value corresponding to the origin on the axis. * * @method getOrigin * @return Number */ getOrigin: function() { var origin = 0, min = this.get("minimum"), max = this.get("maximum"); origin = Math.max(origin, min); origin = Math.min(origin, max); return origin; }, /** * Type of data used in `Data`. * * @property _type * @readOnly * @private */ _type: "numeric", /** * Helper method for getting a `roundingUnit` when calculating the minimum and maximum values. * * @method _getMinimumUnit * @param {Number} max Maximum number * @param {Number} min Minimum number * @param {Number} units Number of units on the axis * @return Number * @private */ _getMinimumUnit:function(max, min, units) { return this._getNiceNumber(Math.ceil((max - min)/units)); }, /** * Calculates a nice rounding unit based on the range. * * @method _getNiceNumber * @param {Number} roundingUnit The calculated rounding unit. * @return Number * @private */ _getNiceNumber: function(roundingUnit) { var tempMajorUnit = roundingUnit, order = Math.ceil(Math.log(tempMajorUnit) * 0.4342944819032518), roundedMajorUnit = Math.pow(10, order), roundedDiff; if (roundedMajorUnit / 2 >= tempMajorUnit) { roundedDiff = Math.floor((roundedMajorUnit / 2 - tempMajorUnit) / (Math.pow(10,order-1)/2)); tempMajorUnit = roundedMajorUnit/2 - roundedDiff*Math.pow(10,order-1)/2; } else { tempMajorUnit = roundedMajorUnit; } if(!isNaN(tempMajorUnit)) { return tempMajorUnit; } return roundingUnit; }, /** * Calculates the maximum and minimum values for the `Data`. * * @method _updateMinAndMax * @private */ _updateMinAndMax: function() { var data = this.get("data"), max, min, len, num, i = 0, setMax = this.get("setMax"), setMin = this.get("setMin"); if(!setMax || !setMin) { if(data && data.length && data.length > 0) { len = data.length; for(; i < len; i++) { num = data[i]; if(isNaN(num)) { max = setMax ? this._setMaximum : max; min = setMin ? this._setMinimum : min; continue; } if(setMin) { min = this._setMinimum; } else if(min === undefined) { min = num; } else { min = Math.min(num, min); } if(setMax) { max = this._setMaximum; } else if(max === undefined) { max = num; } else { max = Math.max(num, max); } this._actualMaximum = max; this._actualMinimum = min; } } if(this.get("scaleType") !== "logarithmic") { this._roundMinAndMax(min, max, setMin, setMax); } else { this._dataMaximum = max; this._dataMinimum = min; } } }, /** * Rounds the mimimum and maximum values based on the `roundingUnit` attribute. * * @method _roundMinAndMax * @param {Number} min Minimum value * @param {Number} max Maximum value * @private */ _roundMinAndMax: function(min, max, setMin, setMax) { var roundingUnit, minimumRange, minGreaterThanZero = min >= 0, maxGreaterThanZero = max > 0, dataRangeGreater, maxRound, minRound, topTicks, botTicks, tempMax, tempMin, units = this.getTotalMajorUnits() - 1, alwaysShowZero = this.get("alwaysShowZero"), roundingMethod = this.get("roundingMethod"), useIntegers = (max - min)/units >= 1; if(roundingMethod) { if(roundingMethod === "niceNumber") { roundingUnit = this._getMinimumUnit(max, min, units); if(minGreaterThanZero && maxGreaterThanZero) { if((alwaysShowZero || min < roundingUnit) && !setMin) { min = 0; roundingUnit = this._getMinimumUnit(max, min, units); } else { min = this._roundDownToNearest(min, roundingUnit); } if(setMax) { if(!alwaysShowZero) { min = max - (roundingUnit * units); } } else if(setMin) { max = min + (roundingUnit * units); } else { max = this._roundUpToNearest(max, roundingUnit); } } else if(maxGreaterThanZero && !minGreaterThanZero) { if(alwaysShowZero) { topTicks = Math.round(units/((-1 * min)/max + 1)); topTicks = Math.max(Math.min(topTicks, units - 1), 1); botTicks = units - topTicks; tempMax = Math.ceil( max/topTicks ); tempMin = Math.floor( min/botTicks ) * -1; if(setMin) { while(tempMin < tempMax && botTicks >= 0) { botTicks--; topTicks++; tempMax = Math.ceil( max/topTicks ); tempMin = Math.floor( min/botTicks ) * -1; } //if there are any bottom ticks left calcualate the maximum by multiplying by the tempMin value //if not, it's impossible to ensure that a zero is shown. skip it if(botTicks > 0) { max = tempMin * topTicks; } else { max = min + (roundingUnit * units); } } else if(setMax) { while(tempMax < tempMin && topTicks >= 0) { botTicks++; topTicks--; tempMin = Math.floor( min/botTicks ) * -1; tempMax = Math.ceil( max/topTicks ); } //if there are any top ticks left calcualate the minimum by multiplying by the tempMax value //if not, it's impossible to ensure that a zero is shown. skip it if(topTicks > 0) { min = tempMax * botTicks * -1; } else { min = max - (roundingUnit * units); } } else { roundingUnit = Math.max(tempMax, tempMin); roundingUnit = this._getNiceNumber(roundingUnit); max = roundingUnit * topTicks; min = roundingUnit * botTicks * -1; } } else { if(setMax) { min = max - (roundingUnit * units); } else if(setMin) { max = min + (roundingUnit * units); } else { min = this._roundDownToNearest(min, roundingUnit); max = this._roundUpToNearest(max, roundingUnit); } } } else { if(setMin) { if(alwaysShowZero) { max = 0; } else { max = min + (roundingUnit * units); } } else if(!setMax) { if(alwaysShowZero || max === 0 || max + roundingUnit > 0) { max = 0; roundingUnit = this._getMinimumUnit(max, min, units); min = max - (roundingUnit * units); } else { min = this._roundDownToNearest(min, roundingUnit); max = this._roundUpToNearest(max, roundingUnit); } } else { min = max - (roundingUnit * units); } } } else if(roundingMethod === "auto") { if(minGreaterThanZero && maxGreaterThanZero) { if((alwaysShowZero || min < (max-min)/units) && !setMin) { min = 0; } roundingUnit = (max - min)/units; if(useIntegers) { roundingUnit = Math.ceil(roundingUnit); max = min + (roundingUnit * units); } else { max = min + Math.ceil(roundingUnit * units * 100000)/100000; } } else if(maxGreaterThanZero && !minGreaterThanZero) { if(alwaysShowZero) { topTicks = Math.round( units / ( (-1 * min) /max + 1) ); topTicks = Math.max(Math.min(topTicks, units - 1), 1); botTicks = units - topTicks; if(useIntegers) { tempMax = Math.ceil( max/topTicks ); tempMin = Math.floor( min/botTicks ) * -1; roundingUnit = Math.max(tempMax, tempMin); max = roundingUnit * topTicks; min = roundingUnit * botTicks * -1; } else { tempMax = max/topTicks; tempMin = min/botTicks * -1; roundingUnit = Math.max(tempMax, tempMin); max = Math.ceil(roundingUnit * topTicks * 100000)/100000; min = Math.ceil(roundingUnit * botTicks * 100000)/100000 * -1; } } else { roundingUnit = (max - min)/units; if(useIntegers) { roundingUnit = Math.ceil(roundingUnit); } min = Math.round(this._roundDownToNearest(min, roundingUnit) * 100000)/100000; max = Math.round(this._roundUpToNearest(max, roundingUnit) * 100000)/100000; } } else { roundingUnit = (max - min)/units; if(useIntegers) { roundingUnit = Math.ceil(roundingUnit); } if(alwaysShowZero || max === 0 || max + roundingUnit > 0) { max = 0; roundingUnit = (max - min)/units; if(useIntegers) { Math.ceil(roundingUnit); min = max - (roundingUnit * units); } else { min = max - Math.ceil(roundingUnit * units * 100000)/100000; } } else { min = this._roundDownToNearest(min, roundingUnit); max = this._roundUpToNearest(max, roundingUnit); } } } else if(!isNaN(roundingMethod) && isFinite(roundingMethod)) { roundingUnit = roundingMethod; minimumRange = roundingUnit * units; dataRangeGreater = (max - min) > minimumRange; minRound = this._roundDownToNearest(min, roundingUnit); maxRound = this._roundUpToNearest(max, roundingUnit); if(setMax) { min = max - minimumRange; } else if(setMin) { max = min + minimumRange; } else if(minGreaterThanZero && maxGreaterThanZero) { if(alwaysShowZero || minRound <= 0) { min = 0; } else { min = minRound; } max = min + minimumRange; } else if(maxGreaterThanZero && !minGreaterThanZero) { min = minRound; max = maxRound; } else { if(alwaysShowZero || maxRound >= 0) { max = 0; } else { max = maxRound; } min = max - minimumRange; } } } this._dataMaximum = max; this._dataMinimum = min; }, /** * Rounds a Number to the nearest multiple of an input. For example, by rounding * 16 to the nearest 10, you will receive 20. Similar to the built-in function Math.round(). * * @method _roundToNearest * @param {Number} number Number to round * @param {Number} nearest Multiple to round towards. * @return Number * @private */ _roundToNearest: function(number, nearest) { nearest = nearest || 1; var roundedNumber = Math.round(this._roundToPrecision(number / nearest, 10)) * nearest; return this._roundToPrecision(roundedNumber, 10); }, /** * Rounds a Number up to the nearest multiple of an input. For example, by rounding * 16 up to the nearest 10, you will receive 20. Similar to the built-in function Math.ceil(). * * @method _roundUpToNearest * @param {Number} number Number to round * @param {Number} nearest Multiple to round towards. * @return Number * @private */ _roundUpToNearest: function(number, nearest) { nearest = nearest || 1; return Math.ceil(this._roundToPrecision(number / nearest, 10)) * nearest; }, /** * Rounds a Number down to the nearest multiple of an input. For example, by rounding * 16 down to the nearest 10, you will receive 10. Similar to the built-in function Math.floor(). * * @method _roundDownToNearest * @param {Number} number Number to round * @param {Number} nearest Multiple to round towards. * @return Number * @private */ _roundDownToNearest: function(number, nearest) { nearest = nearest || 1; return Math.floor(this._roundToPrecision(number / nearest, 10)) * nearest; }, /** * Returns a coordinate corresponding to a data values. * * @method _getCoordFromValue * @param {Number} min The minimum for the axis. * @param {Number} max The maximum for the axis. * @param {Number} length The distance that the axis spans. * @param {Number} dataValue A value used to ascertain the coordinate. * @param {Number} offset Value in which to offset the coordinates. * @param {Boolean} reverse Indicates whether the coordinates should start from * the end of an axis. Only used in the numeric implementation. * @return Number * @private */ _getCoordFromValue: function(min, max, length, dataValue, offset, reverse) { var range, multiplier, valuecoord, isNumber = Y_Lang.isNumber; dataValue = parseFloat(dataValue); if(isNumber(dataValue)) { if(this.get("scaleType") === "logarithmic" && min > 0) { min = Math.log(min); max = Math.log(max); dataValue = Math.log(dataValue); } range = max - min; multiplier = length/range; valuecoord = (dataValue - min) * multiplier; valuecoord = reverse ? offset - valuecoord : offset + valuecoord; } else { valuecoord = NaN; } return valuecoord; }, /** * Rounds a number to a certain level of precision. Useful for limiting the number of * decimal places on a fractional number. * * @method _roundToPrecision * @param {Number} number Number to round * @param {Number} precision Multiple to round towards. * @return Number * @private */ _roundToPrecision: function(number, precision) { precision = precision || 0; var decimalPlaces = Math.pow(10, precision); return Math.round(decimalPlaces * number) / decimalPlaces; } }; Y.NumericImpl = NumericImpl;